
SDN-Based Big Data Caching in ISP Networks
Yong Cui , Jian Song, Minming Li , Qingmei Ren, Yangjun Zhang, and Xuejun Cai

Abstract—Cooperative cache has become a promising technique to optimize the traffic by caching big data in networks. However,

controlling distributed cache nodes to update cached contents synergistically is still challenging in designing cooperative cache

systems. This paper proposes an SDN-based Cooperative Cache Network (SCCN) for ISP networks, aiming to minimize the content

transmission latency while reducing the inter-ISP traffic. Based on the proposed increment recording mechanism, the SCCN Controller

can timely capture the change of content popularity, and place the most popular contents on the appropriate SCCN Switches.

We formulate the optimal content placement as a specific multi-commodity facility location problem and prove its NP-hardness.

We propose a Relaxation Algorithm (RA) based on relaxation-rounding technique to solve the problem, which can achieve an

approximation ratio of 1=2 in the worst case. To solve large scale problems for big data efficiently, we further design a Heuristic

Algorithm (HA), which can find a near-optimal solution with three orders of magnitude speedup compared to RA. Specifically, HA can

achieve a desirable tradeoff between the transmission delay and the Internet traffic. We implement a prototype based on Open

vSwitch to demonstrate the feasibility of SCCN. Extensive trace-based simulation results show the effectiveness of SCCN under

various network conditions.

Index Terms—Big data, cooperative cache, SDN, ISP networks

Ç

1 INTRODUCTION

GLOBAL IP traffic will pass a new milestone of 2.0 zetta-
bytes per year in 2019 [1]. The traffic is dominated by

exchanging a large amount of popular contents, e.g., photos
and videos. To cope with the explosive growth of network
traffic, many efforts have been performed to reduce the
bandwidth usage (e.g., [2], [3], [4], [5]), especially by caching
the big data in networks. The P2P approach [2] is a scalable
solution, but its crucial weakness is unavailability due to
the unpredictable nature of users’ cooperation [3]. Content
Delivery Network (CDN) (e.g., [4], [6]) has been a successful
business model, but its agility is limited in server deploy-
ment [7]. Moreover, due to the limited information about
the network conditions, CDNs are hard to meet the require-
ments of traffic management from ISPs’ perspective, espe-
cially to reduce the inter-ISP traffic [8].

In order to reduce the Internet traffic and improve users’
experience, there is an emerging technical trend which ena-
bles network devices to be equipped with cache modules.
Several devices linked together can cache and share the big
data to reduce duplicates and improve performance effi-
ciently. For example, Cisco has developed Web Cache Com-
munication Protocol (WCCP) [9], a router-cache protocol
that localizes network traffic and distributes load across

multiple cache nodes. It is possible for ISPs to exploit the
cooperative cache system for big data caching and delivery.
However, how to control distributed cache nodes to update
cached contents synergistically is still challenging in design-
ing cooperative cache systems. To guarantee that cache
nodes can detect the dynamic popularity of contents and
make placement decisions efficiently, an appropriate cen-
tralized control is needed [10], [11].

Software Defined Network (SDN) [12], [13], [14] as a new
networking paradigm can achieve logically centralized con-
trol over the distributed network nodes. Taking advantage
of SDN, we propose an SDN-based Cooperative Cache Net-
work (SCCN) for ISP networks, which employs SCCN Con-
troller to coordinate distributed SCCN Switches (i.e., cache
nodes). SCCN Switches linked together can cache and share
contents with each other. SCCN Controller can detect the
most popular contents at the global level, perform intensive
computations of content placement decisions and populate
new request forward directions to SCCN Switches quickly.
Moreover, with the help of the centralized controller, the
distributed caching problem can be transformed into a cen-
tralize facility location problem. Since the content placement
decision is sensitive to the accurate knowledge of the con-
tent popularity, we design an increment recording mecha-
nism based on the Least Recently Used (LRU) policy [15] to
capture the popularity change of contents. Based on the
request history (frequency-based) and increment records
(recency-based), content placement decisions are made
periodically or triggered by flash crowds, which can easily
adapt to changes of content popularity over time.

We formulate the content placement as a specific multi-
commodity facility location problem and prove its NP-
hardness. Different from general facility location problems,
we not only aim to satisfying the disk space constraints,
but also jointly optimize the transmission delay and the

� Y. Cui, J. Song, Q. Ren, and Y. Zhang are with Tsinghua University,
Beijing 100084, P.R. China. E-mail: cuiyong@tsinghua.edu.cn, {song-j12,
rqm15, zhangyangjun13}@mails.tsinghua.edu.cn.

� M. Li is with the Department of Computer Science, City University of
Hong Kong, Hong Kong, P.R. China. E-mail: minming.li@cityu.edu.hk.

� X. Cai is with Ericsson, Stockholm 164 80, Sweden.
E-mail: xuejun.cai@gmail.com.

Manuscript received 26 Jan. 2016; revised 25 July 2016; accepted 30 Dec.
2016. Date of publication 15 Jan. 2017; date of current version 7 Sept. 2018.
Recommended for acceptance by J. Chen, H. Wang, and M. Parashar.
For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org, and reference the Digital Object Identifier below.
Digital Object Identifier no. 10.1109/TBDATA.2017.2651901

356 IEEE TRANSACTIONS ON BIG DATA, VOL. 4, NO. 3, JULY-SEPTEMBER 2018

2332-7790� 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Authorized licensed use limited to: Tsinghua University. Downloaded on June 15,2022 at 04:01:46 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-5171-739X
https://orcid.org/0000-0002-5171-739X
https://orcid.org/0000-0002-5171-739X
https://orcid.org/0000-0002-5171-739X
https://orcid.org/0000-0002-5171-739X
https://orcid.org/0000-0002-7370-6237
https://orcid.org/0000-0002-7370-6237
https://orcid.org/0000-0002-7370-6237
https://orcid.org/0000-0002-7370-6237
https://orcid.org/0000-0002-7370-6237
mailto:
mailto:
mailto:
mailto:
mailto:

inter-ISP traffic while satisfying the cache capacity con-
straints. To give a performance benchmark, we design a
Relaxation Algorithm (RA) based on a relaxation-rounding
technique [16] to solve the problem with an approximation
ratio of 1=2 in the worst case. Furthermore, to provide a
highly efficient solution for big data case in practical large
scale systems, we propose a Heuristic Algorithm (HA)
based on the concept of Circular Convex Set [17], which can
reduce the solution space from 2n � 1 to n for placing each
content on n cache nodes. HA is not only feasible to solve
large scale problems, but also allows SCCN Controller to
update the placement decision more frequently, which can
adapt to the change of content popularity more gracefully.
Specifically, it can achieve a desirable tradeoff between the
transmission delay and Internet traffic by selecting con-
tents with different features to cache.

We implement SCCN using Open vSwitch [18] and Ryu

controller [19] to show that SCCN is feasible and incurs
low overhead.We also conduct extensive simulations to eval-
uate our algorithms against several distributed algorithms
based on 14TB real traces collected at border routers of a
campus network. The simulation results show that HA can
achieve near optimal placements with three orders of magni-
tude speedup compared to RA under various network condi-
tions. In summary, our key contributions are as follows:

� We design a novel SDN-based Cooperative Cache
Network to provide a centralized control over the
distributed cache nodes in ISP networks, which
ensures a available cooperative cache for big data
traffic. SCCN Controller can capture the popularity
changes of contents based on the proposed incre-
mental record mechanism and place contents among
cache nodes optimally.

� We formulate the optimal content placement as a
multi-commodity facility location problem and
prove its NP-hardness, which aims to jointly opti-
mize the transmission delay and the inter-ISP traffic.
We design a Relaxation Algorithm to solve the prob-
lem with an approximation ratio of 1=2 in the worst
case. To solve large scale problems efficiently, we
further design a Heuristic Algorithm, which can find
a near-optimal solution with three orders of magni-
tude speedup compared to RA.

� We implement a prototype based on Open

vSwitch and conduct extensive simulations based
on real traces to show the feasibility and effective-
ness of SCCN.

The rest of this paper is organized as follows. Section 2
describes the design of SCCN. Section 3 formally defines
the content placement problem. Two algorithms are pre-
sented in Sections 4 and 5, respectively. Simulation and
experimental results are presented in Section 6. Finally, we
summarize the related work in Section 7 and conclude the
paper in Section 8.

2 SYSTEM FRAMEWORK

In this section, we first outline the SCCN framework and
depict the design of the main components. Then we propose
a series of strategies to address practical issues for SCCN
deployment in real networks.

2.1 Framework Design

SCCN performs coordinated caching in networks through
two main components as shown in Fig. 1. The first is a cen-
tral SCCN Controller, and the second is a set of SCCN
Switches (i.e., cache nodes). The SCCN Controller has a
global view of the network states. It collects the request
counts from SCCN Switches and records the recent requests
of contents which are not cached in the network. Based on
the information, the Controller makes content placement
decisions. Then the SCCN Controller updates information
(e.g., the locations of contents), and installs the entries of
request forward directions on SCCN Switches to indicate
how to forward requests to the appropriate cache nodes.
SCCN Switches based on Open vSwitch cache contents in
accordance with the decision made by SCCN Controller,
providing contents for local users. If a Switch does not cache
the content that local users request, it will forward the
request to other SCCN Switches under the indication of the
Controller. We can deploy the content placement algorithm
in the SDN controller by programming. Adding a proxy ser-
vice and cache modules in SDN switches enables the imple-
mentation of SCCN.

SCCN Controller. The SCCNControllermaintains a Switch
Information Table (SIT), a Content Information Table (CIT)
and an Incremental Content Information Table (ICIT). SIT
records profiles of every SCCN Switch, e.g., the residual
capacity of cache, the interface bandwidth and so on. CIT
stores content information, e.g., the location of contents, the
request counts and so on. It collects the information from
SCCNSwitches periodically, and executes in-cache Least Fre-
quently Used (LFU) strategy [15], i.e., the counts are defined
for cached contents only. The structure of ICIT is similar to
CIT. The difference is that ICIT records the information of
contents which are not cached in the network, but have been
requested by users recently. It executes recency/frequency-
based strategy [15]. When a recorded content is hit, it is
moved to the start of the list and its hit count increases by
one. New requested contents are inserted at the beginning of
the list, and the content at the end of the list is discarded.

The Controller makes content placement decisions peri-
odically (e.g., every hour) according to the information
recorded in SIT, CIT and ICIT. In addition, when the
requested frequency of a content exceeds a threshold value
within a time window, the placement update will also be

Fig. 1. The operation mechanism of SCCN.

CUI ETAL.: SDN-BASED BIG DATA CACHING IN ISP NETWORKS 357

Authorized licensed use limited to: Tsinghua University. Downloaded on June 15,2022 at 04:01:46 UTC from IEEE Xplore. Restrictions apply.

triggered, which can capture the flash crowds in time,
thereby avoiding the congestion of the access links. It also
deals with content requests from Switches when Switches
cannot find the content locations in its local Hash Table.

SCCN Switch. An SCCN Switch consists of a proxy ser-
vice, a cache management service and a Flow Table (FT).
The proxy service is used to take over request sessions.
Cache management service maintains a Hash Table (HT)
and a Cache Store (CS) to provide query and content storage
services. CS stores contents, hash indexes of content
requests and the version of contents. HT records hash
indexes of content requests, requests count and locations,
i.e., which node caches the content. FT records flow entries
which contain Headers (to match content requests and other
type of flows) and Actions (to tell the Switch what direction
to forward the flows).

Workflow. When an SCCN Switch starts, it will connect to
TCP port 6,633 of the SCCN Controller and setup a TLS
channel. Then a connection is established by exchanging
Hello message between them. The system operation
includes the following phases: (1) When SCCN Switch B
receives users’ flows, it redirects specific flows to local
proxy service, and forwards other types of flows according
to default low priority rules in FT. Proxy service calculates
the hash value of the request [20], and then sends a retrieval
request to the HT. If the hash value hits a record in the HT
directed to the local cache, cache management service
returns the content to the proxy service and updates the
request count. The proxy service forwards the response to
the Switch. The Switch translates source IP and port of the
response to the original server’s IP and port, and forwards
the response to the user. (2) If the hash value hits a record
directed to Switch A, the request will be forwarded to
Switch A. Switch A as the server node will send the content
to Switch B. (3) If the match fails, both the content request
and hash value are sent to the Controller by the Packet-

in message, which will retrieve the request in the CIT. If
the request hits in the Controller’s record, the Controller
returns a message to add a new flow entry on the FT of
Switch B. Switch B will forward the request according to
the direction and records the location in the HT. (4) Other-
wise, SCCN Controller forwards the original content
request to the Internet and records the request in the ICIT.
When the Controller updates the placement decision, it will
update FT of the corresponding Switch by the flow-mod

message. Using hash values to match content requests can
accelerate the retrieval speed. Moreover, the hash values of
the requests are all calculated on the Switches and the

Controller only handles requests that failed to match in local
HT, which relieve the pressure of the Controller.

2.2 Practical Considerations

A series of practical issues must be considered for SCCN
design and deployment in the real networks.

2.2.1 Content Popularity Estimation

To find the popularity change of contents, we analyzed real
trace data collected at border routers of a campus network.
We filter the requests of the top 200 popular contents from
the collected traces of each hour. The request counts of the
top 200 popular contents during the peak hours (17:00-
21:00) are shown in Fig. 2. The requests of more popular
contents occupy larger proportion of all requests, which is
coincident with the Zipf Distribute [21].

Moreover, we selected the four most popular contents at
21:00 from traffic traces, and recorded the number of
requests of these contents in the following every hour as
shown in Fig. 3. We find that the popularity of contents will
last for a long time, but the request pattern of these contents
significantly changes in every hour. This indicates that the
frequency-based replacement policies are not sensitive
enough to capture the change of the request pattern, espe-
cially the flash crowds. On the other hand, this indicates
that employing simple recency-based replacement policies
(e.g., LRU) and updating placement frequently should
result in “cycling” of the cache [22]. The performance of the
placement decision is sensitive to accurate knowledge of the
content request pattern. We design a recency/frequency-
based strategy to estimate the demand of contents. SCCN
Controller makes content placement decisions based on fre-
quency-based request history and recency-based increment
recording, which can not only adapt to the change of
requests timely, but also avoid caching jitter.

2.2.2 Placement Update Overhead and Frequency

The overhead of placement update mainly includes the
placement decision computation and content migration
between cache nodes. We design the efficient Heuristic
Algorithm, which can find a near-optimal solution with
three orders of magnitude speedup compared to the relaxa-
tion-based approximation algorithm. It allows us to update
placement every hour, rather than to update placement
every week like Lagrangian Relaxation-based Solution
(LRS) [22]. To reduce the migration overhead, we design the

Fig. 2. Requests count of the top 200 popular contents.
Fig. 3. Number of requests of contents every hour.

358 IEEE TRANSACTIONS ON BIG DATA, VOL. 4, NO. 3, JULY-SEPTEMBER 2018

Authorized licensed use limited to: Tsinghua University. Downloaded on June 15,2022 at 04:01:46 UTC from IEEE Xplore. Restrictions apply.

delayed fetching mechanism. When a new placement
requires node i to cache content f , i does not request f
immediately, but waits until a local user requests f , then
fetches it from the Internet and stores a copy. It can avoid
the traffic burst of simultaneous migration.

2.2.3 Routing Selection

When Switch A cannot fetch a content locally, it can fetch
the content from a remote Switch. In this case, SCCN Con-
troller just tells it the direction, i.e., where A can fetch the
content. The routing selection of content request is beyond
the scope of this paper. Thus, we assume that Switch A
routes the request according to the routing protocol of the
network (e.g., shortest path routing) [22].

2.2.4 Cache Coherence Issue

The cached contents in SCCN are mainly multi-media
contents [23], [24]. They are updated not as frequently as
dynamic/personalized Web pages. Thus, we adopt adap-
tive TTL approach to maintain cache coherence. When a
cache node fetches and stores a content, it records the
store time in the CS as the version information. If the
current time minus the store time exceeds a threshold
value, the node will fetch the content from the Internet
again. Studies [25] have shown that adaptive TTL can
keep the probability of stale contents within a reasonable
bound (< 5 percent).

3 PROBLEM FORMULATION

To provide a more precise description of SCCN, we model
the network by a directed graph G ¼ ðV;EÞ, where V and
E ¼ V � V are the sets of SCCN Switches and directed
edges. Each SCCN Switch i 2 V is defined as a cache node
in the network. The cache size of each node i is denoted as
Si and the number of cache nodes is n. Each edge ði; jÞ 2 E
in the graph represents a link from node i to node j. The
contents needed to be placed are denoted by set
F ¼ ff1; f2; . . . ; fmg. The Controller needs to make a place-
ment decision for m contents periodically or triggered by
flash crowds. Content fk 2 F has size Bk. A list of symbols
used in this paper is summarized in Table 1.

3.1 Transmission Delay

We define the node requesting contents as the client node,
and the node providing contents as the server node. The
delay of fetching a content fk from a neighbouring node
and from the Internet are denoted as D and IðfkÞ respec-
tively. Requests for content fk issued by users are first
directed to the directly connected cache node i. Once receiv-
ing requests, if i caches the content, it returns the corre-
sponding content fk to users and the delay is considered as
0, otherwise i forwards these requests to the server node in
according with the FT. We assume that the transmission
delay is proportional to the number of hops between i and j
as in [22]. The delay HjiðfkÞD is positively correlated to the
hop count, where HjiðfkÞ denotes the number of hops for
transmitting fk from j to i. If no nodes cache the content fk,
i must download it from the Internet and the corresponding
delay is IðfkÞ. We consider the Internet as a special cache

node denoted as nþ 1. The transmission delay can be
defined as follows.

Definition 1. Transmission Delay is the delay that node i
obtains fk from node j, which can be formulated as,

dijðfkÞ ¼ HjiðfkÞ �D; j ¼ 1; . . . ; n;
IðfkÞ; j ¼ nþ 1;

�

whereHjiðfkÞ denotes the hops between i and j.

3.2 Time Utility and Traffic Cost

For each node j, we define the average incoming rate of con-
tent requests as Rj. The proportion of requests for contents
at j is represented by the vector pj

!¼ ðpjðf1Þ; . . . ; pjðfmÞÞ.
The rate of requests for fk at j is denoted as rjðfkÞ, which
can be calculated by rjðfkÞ ¼ pjðfkÞ �Rj. Generally speaking,
fetching contents from cache nodes will suffer less delay
than from the Internet, which is defined as Time Utility.

Definition 2. Time Utility is the saved transmission delay
when node j satisfies node i’s demand for content fk, which can
be formulated as,

UijðfkÞ ¼ riðfkÞ � ½IðfkÞ � dijðfkÞ�; (1)

where i ¼ 1; . . . ; n and j ¼ 1; . . . ; nþ 1.

Note that Uiðnþ1ÞðfkÞ ¼ 0, i.e., the Time Utility is 0 when
the Internet satisfies node i’s demand, which means that no
transmission delay is saved.

Definition 3. Traffic Cost is the total data traffic generated by
satisfying the demand of node i for content fk, which can be for-
mulated as TiðfkÞ ¼ riðfkÞ �Bk.

Since local cache and cooperative cache between nodes
will not generate Internet traffic, the Internet traffic cost is
only caused by downloading the contents from the Internet
because no node caches the contents.

3.3 Decision Vector

The content placement decision is influenced by the content
request distribution. We define the fetch decision vector
and placement decision vector to depict the cooperative
caching. Fetch Decision Vector xi

!ðfkÞ ¼ ðxi1ðfkÞ; . . . ;
xiðnþ1ÞðfkÞÞ decides where node i fetches content fk as

TABLE 1
Index of Symbols

Term Definition

Si The cache capacity of cache node i
fk The content which can be cached in the network
Bk The size of content fk
D The transmission delay between neighbouring nodes
IðfkÞ The delay for transmitting fk from the Internet
HijðfkÞ The hops number for transmitting fk from i to j
Rj The incoming rate of content requests at node j
rjðfkÞ The incoming rate of requests for fk at node j
pjðfkÞ The proportion of requests for fk at node j
dijðfkÞ The delay that i obtains content fk from j
UijðfkÞ The saved transmission delay when j satisfies i for fk
TiðfkÞ The traffic that satisfying the demand of node i for fk

CUI ETAL.: SDN-BASED BIG DATA CACHING IN ISP NETWORKS 359

Authorized licensed use limited to: Tsinghua University. Downloaded on June 15,2022 at 04:01:46 UTC from IEEE Xplore. Restrictions apply.

xijðfkÞ ¼ 1; node i will fetch fk from j;
0; otherwise;

�

where i ¼ 1; . . . ; n, j ¼ 1; . . . ; nþ 1 and k ¼ 1; . . . ;m. Espe-
cially, xiðnþ1ÞðfkÞ ¼ 1 indicates that node i fetches fk from
the Internet. Placement Decision Vector y!ðfkÞ ¼ ðy1ðfkÞ; . . . ;
ynðfkÞÞ decides where to place content fk,

yjðfkÞ ¼ 1; node j caches fk;
0; otherwise;

�

where j ¼ 1; . . . ; n and k ¼ 1; . . . ;m. There may be more
than one element equal to 1, which means that fk is cached
at more than one node. In addition, if all elements are 0, it
shows that fk is not cached in the whole network. Espe-
cially, ynþ1ðfkÞ ¼ 1means the Internet stores fk.

3.4 Model Description

The content placement decision aims to maximize the net-
work-wide Time Utility with the capacity constraints of
cache nodes and the Internet Traffic Cost constraints, i.e.,

max
X
fk2F

X
i2V

Xnþ1

j¼1

UijðfkÞ � xijðfkÞ

s.t.

(2)

Xnþ1

j¼1

xijðfkÞ ¼ 1; 8i 2 V; fk 2 F; (3)

xijðfkÞ � yjðfkÞ; 8i; j 2 V; fk 2 F; (4)X
fk2F

Bk � yjðfkÞ � Sj; 8j 2 V; (5)

X
fk2F

X
i2V

TiðfkÞ � xijðfkÞ � r �C; j ¼ nþ 1; (6)

xijðfkÞ; yjðfkÞ 2 f0; 1g; 8i 2 V; fk 2 F;

j ¼ 1; . . . ; nþ 1:
(7)

The objective (2) is to maximize the network-wide Time
Utility. To satisfy all the requests, constraints (3) ensure
every request from node i can fetch content fk from only
one place. Constraints (4) require that node j has cached fk
when other nodes request fk from it. Constraints (5) estab-
lish the finite capacity of each node. Constraint (6) provides
the Internet Traffic Cost limitation, where C is the capacity
of the access link. We can control the traffic proportion by
adjusting the coefficient r 2 ½0; 1�. Note that, if the traffic
constraint is too strict to get a feasible solution, the network
administrator should add the capacity of switches or
increase r. We will analyze how to choose a reasonable r in
our simulation. Finally, constraints (7) provide the nonnega-
tivity and integrality of the decision variables. By reducing
from the knapsack problem, we have the following theorem:

Theorem 1. Solving the optimization problem presented in (2) is
NP-hard.

Proof. We transform 0-1 knapsack problem which is NP-
hard to our problem presented in (2) as follows. Given a
set of m items denoted by set F ¼ ff1; f2; . . . ; fmg and a
knapsack j with capacity S. Denote the profit and weight

of one item as UðfkÞ and SðfkÞ respectively. The problem
is to select the most valuable set of items to maximize the
profit, satisfying the capacity constraint S.

We define the cache space required by caching content
fk as the weight, i.e., SðfkÞ ¼ Bk, and the saved transmis-
sion delay as profit, i.e., UðfkÞ ¼

P
i2V UijðfkÞ � xijðfkÞ.

And yjðfkÞ ¼ 0 means that content fk is not cached in j.
Then, the 0-1 knapsack problem is equivalent to the prob-
lem where only one cache node exists in the network.
This completes the proof. tu

4 APPROXIMATION ALGORITHM BASED ON

RELAXATION-ROUNDING

To handle the problem in (2), we design the Relaxation Algo-
rithm (RA) based on a relaxation-rounding technique [16],
and prove that it is at least 1=2 of the theoretical optimal
scheme. The main idea is to address the original integer opti-
mization problem by solving another relaxed problem. We
first relax the 0-1 binary variables, i.e., the FetchDecision Vector
and Placement Decision Vector, to real number variables rang-
ing from 0 to 1. Intuitively, the relaxation of the Fetch Decision
Vector to real number variablemeans that the users can fetch a
fraction of a file from a cache node, and relaxing the Placement
Decision Vectormeans that we can store a fraction of a file on a
cache node. The induced relaxed problem can be solved in
polynomial time. With the global optimal solution of the
relaxed problem, we use a rounding procedure to generate
the approximate solution to the original problem.

4.1 Relaxation

We first relax the original problem by introducing variablesbxiðfkÞ; byðfkÞ 2 ½0; 1�, which substitute for the Fetch Decision
Vector and Placement Decision Vector in (2). The relaxed prob-
lem is expressed as (8). As all the constraints are linear equa-
tions, the fractional optimal solution can be found in
polynomial time, which is denoted by Ur. With the global
optimal solution of the relaxed problem, we use a rounding
procedure to generate the approximate solution to the origi-
nal problem. Each element in bxi

!ðfkÞ denotes the tendency
where node i decides to fetch content fk, and each element inby!ðfkÞ denotes the tendency about where to cache content fk.

max
X
fk2F

X
i2V

Xnþ1

j¼1

UijðfkÞ � bxijðfkÞ
subject to:Xnþ1

j¼1

bxijðfkÞ ¼ 1; 8i 2 V; fk 2 F;

bxijðfkÞ � byjðfkÞ; 8i; j 2 V; fk 2 F;X
fk2F

Bk � byjðfkÞ � Sj 8j 2 V;

X
fk2F

X
i2V

TiðfkÞ � bxiðnþ1ÞðfkÞ � r �C

bxijðfkÞ; byjðfkÞ 2 ½0; 1�; 8i 2 V; fk 2 F;

j ¼ 1; . . . ; nþ 1:

(8)

4.2 Rounding

We use the rounding technique proposed in [16] to obtain
integral assignment matrices xi

!ðfkÞ and y!ðfkÞ, replacing

360 IEEE TRANSACTIONS ON BIG DATA, VOL. 4, NO. 3, JULY-SEPTEMBER 2018

Authorized licensed use limited to: Tsinghua University. Downloaded on June 15,2022 at 04:01:46 UTC from IEEE Xplore. Restrictions apply.

the fractional optimal solution. The main idea is to construct
a weighted bipartite graph for every content fk based on the

fractional solution and find the maximum weighted match-

ing to generate the solution of (2). Let €G ¼ ð €A; €V ; €E; €Wð €EÞÞ
denote the bipartite graph, where €A and €V are two groups
of nonadjacent nodes and €E denotes the set of edges. €A and
€V represent client nodes and server nodes, respectively.

First, we construct the client node set €A ¼ f €a1 . . . ; €ang
according to non-increasing sequence of their requesting
rates riðfkÞ. Note that when computing bxijðfkÞ, we assume
that client i will request fk from server j as long asbxijðfkÞ > 0. Under this assumption, each client node is able
to request fk from multiple server nodes. Although it is not
the real case, the estimated results can be used to predict
the contribution of each request to the global Time Utility.

Then, we create the nodes in €V based on bxi

!ðfkÞ. Let
cj ¼ dPi2E bxijðfkÞe. Each server node j corresponds to cj
nodes in €V , denoted by €V ¼ f€vj;c : j ¼ 1; . . . ; n; c ¼ 1; . . . ;
cjg. With €A and €V , we can set up edges between them.
Edges of graph €G will correspond to client and server pairs
ði; jÞ such that bxijðfkÞ > 0. For each server node j, if cj � 1,
there is only one node €vj;1 in €V . For each client node i satis-
fying bxijðfkÞ > 0, add edge €ei;j;1 to €E and set €wð€ei;j;1Þ ¼bxijðfkÞ. Otherwise, if cj > 1, there are multiple nodes

f€vj;1; . . . ; €vj;cjg � €V corresponding to j. Let i1 denote the

minimum number satisfying
Pi1

i¼1 bxijðfkÞ 	 1. For i 2
f1; . . . ; i1 � 1g, add edge €ei;j;1 to €E and set its weight

€wð€ei;j;1Þ ¼ bxijðfkÞ; for i1, add edge €ei1;j;1 and set its weight

€wð€ei;j;1Þ ¼ 1�Pi1�1
i¼1 €wð€ei;j;1Þ. This ensures that the sum of

the components of €wð€eÞ for edges incident to €vj;1 is 1. IfPi1
i¼1 bxijðfkÞ > 1, add edge €ei;j;2 and set its weight €wð€ei;j;2Þ ¼Pi1
i¼1 bxijðfkÞ � 1. We then proceed with client nodes i > i1,

and construct edges incident to €vj;2, until a total of exactly
one client node is assigned to €vj;2, and so forth.

After constructing a bipartite graph €G for every con-
tent fk, we process €G according to the Time Utility in
descending order. With the constraints of node capacity
and Traffic Cost, we perform maximum weighted match-
ing on the bipartite graph. Let €EM denote the results of
matching. For each selected edge in the set, set xijðfkÞ
to 1; then, all the unmodified elements in xi

!ðfkÞ are set
to 0. Thus, we obtain the solution of (2). RA consists of
three steps as shown in Algorithm 1.

Algorithm 1. RA

Input: fB1; . . . ; Bmg, fIðf1Þ; . . . ; IðfmÞg, fS1; . . . ; Sng,
riðfkÞ; HijðfkÞwhere i; j ¼ 1; . . . ; n and k ¼ 1; . . . ;m.

Output: y!ðfkÞ, xi
!ðfkÞ and Ua.

1: Obtain the fractional solution by!ðfkÞ, bxi

!ðfkÞ and Ur by solving
a relaxed optimization.

2: Obtain the integral solution y!ðfkÞ, xi
!ðfkÞ and Ua by a round-

ing process.
3: Assign the contents to appropriate cache nodes.
4: return y!ðfkÞ, xi

!ðfkÞ and Ua.

Let Ua denote the solution obtained by RA and U
 denote
the optimal integer solution of (2). We have the following
theorem to estimate the lower bound of Ua.

Theorem 2. Ua 	 1
2U

.

Proof. We denote the sum of Time Utility placed in the net-
work as Ur ¼

PR
k¼1 Ufk , where fk 2 F and R � m. In a sim-

ilar way, Ua is expressed as Ua ¼
PR

k¼1 U
0
fk
. U 0

fk
¼ 0means

that fk is not placed in the scheme of Ua. We construct a
complementary solution Uc of Ua in accordance with [16],
i.e., set xijðfkÞ to 1 for each edge in the set €E � €EM . Then,
we have Uc ¼

PR
k¼1 U

00
fk
, where fk 2 F and R � m. The U 00

fk
can be calculated as,

U 00
fi
¼

0; if U 0
fi
	 Ufi ;

Ufi � U 0
fi
; if U 0

fi
< Ufi ;

Ufi ; if U 0
fi
¼ 0:

8><
>:

According to [16], the rounding result satisfies
Ua þ Uc 	 Ur. It is obvious that Ua 	 Uc. Therefore, we
have Ua 	 1

2Ur 	 1
2U

. This completes the proof. tu

5 HEURISTIC ALGORITHM FOR CONTENT

PLACEMENT

Although RA achieves a polynomial-time complexity, the
complexity grows significantly with the number of contents
m. It is not efficient enough for large scale problems. To
ease the computational complexity of the system with larger
number of contents m and cache nodes n, we design a
Heuristic Algorithm to address the problem efficiently
based on the concept of Circular Convex Set [17].

We first consider the placement of only one content fk.
Deciding where to place fk and which clients fetch fk from
the location is equivalent to a discrete median problem [17].
Every partition of the set V induces a feasible solution. We
define Circular Convex Sets for every content, which can
reduce the number for traversing these partitions from
2n � 1 to n.

Definition 4. A set Pj � V is Circular Convex Set ()
8i 2 Pj; 8t 2 V � Pj; UtjðfkÞ < UijðfkÞ. The unit utility of

the Circular Convex Set can be denoted as

P
i2Pj UijðfkÞ

Bk
.

For each server node j 2 V we set Ui1jðfkÞ 	 Ui2j

ðfkÞ 	 � � � 	 UinjðfkÞ, where fi1; . . . ing ¼ V . Then we
sequentially generate Circular Convex Sets for which j is a
center: fi1g; fi1; i2g; . . . ; fi1; . . . ; ing. Hence the number of
Circular Convex Sets centered in j is n. It is possible to tra-
verse these partitions in polynomial-time. Then, we sequen-
tially find the subset for all contents fk 2 F and server nodes
j 2 V , which can achieve the maximum Time Utility subject
to the space constraints and traffic constraints. This subset
is recorded in COVERðfkÞ and removed from V ðfkÞ. HA is
processed iteratively until finding optimal partitions for
every content, which is shown in Algorithm 2.

When the algorithm is triggered, for every content fk, the
algorithm sets an uncovered set V ðfkÞ and a covered set
COVERðfkÞ. Line 3 sorts client nodes in descending order
according to the Time Utility with server node j, and con-
structs V 0

j ðfkÞ for every server node j and every fk. The time
complexity of this step is Oðmn2 log 2nÞ, where m and n
denote the number of contents and the number of cache
nodes in the network respectively. Line 4 calculates the sum
of Time Utility for every Circular Convex Set, and finds the

CUI ETAL.: SDN-BASED BIG DATA CACHING IN ISP NETWORKS 361

Authorized licensed use limited to: Tsinghua University. Downloaded on June 15,2022 at 04:01:46 UTC from IEEE Xplore. Restrictions apply.

Circular Convex Set achieving maximum utility and the cor-
responding service node j
. The time complexity of this step
is Oðmn2MÞ, where M denotes the number of contents that
network nodes can cache. Line 5 adds the Circular Convex
Set with maximum utility to COVERðfkÞ. Line 6 removes
the subset from V 0

j ðfkÞ. The algorithm will be terminated if
all contents have been processed or it cannot find a cover
set satisfying both capacity constraints and traffic con-
straints, as shown in line 8. In general, M is much larger
than n, so the time complexity of Algorithm 2 is Oðmn2MÞ.

Algorithm 2.HA

Input: fB1; . . . ; Bmg, fIðf1Þ; . . . ; IðfmÞg, fS1; . . . ; Sng,
riðfkÞ; HijðfkÞwhere i; j ¼ 1; . . . ; n and k ¼ 1; . . . ;m.

Output: y!ðfkÞ, xi
!ðfkÞ and Uh

1: 8fk 2 F, set COVERðfkÞ ¼ ;, V ðfkÞ ¼ V , Ck ¼ jV ðfkÞj.
2: repeat
3: 8j 2 V; 8fk 2 F, generate convex sets of V ðfkÞ, then by sort-

ing these convex sets by non-increasing unit utility, we get
sets V 0

j;1ðfkÞ; . . . ; V 0
j;Ck

ðfkÞ .
4: For all unselected couples fj; fkg and c 2 f1; . . . ; Ckg find

Q ¼ fi1; . . . ; ilg such thatP
i2q Uij
 ðfkÞ

Bk
¼ argmaxV 0

j;c
ðfkÞ6¼?

P
i2V 0

j;c
ðfkÞ UijðfkÞ
Bk

satisfying capacity constraint of j
 and Traffic Cost con-
straint of the Internet.

5: COVERðfkÞ ¼ COVERðfkÞ [ffi1; . . . ; ilgg.
6: V ðfkÞ ¼ V ðfkÞ � fi1; . . . ; ilg, update Ck ¼ jV ðfkÞj.
7: 8i 2 fi1; . . . ; ilg, xij
 ðfkÞ ¼ 1 and yj
 ðfkÞ ¼ 1.

8: until V ðfkÞ ¼ ; or q is not found.
9: return y!ðfkÞ, xi

!ðfkÞ and Uh.

6 PERFORMANCE EVALUATION

We evaluate the effectiveness of SCCN algorithms by exten-
sive trace-based simulation, and demonstrate the feasibility
of the system by a prototype implementation.

6.1 Trace-Based Simulation

To evaluate SCCN, we develop a protocol independent sim-
ulator, which can define arbitrary network topology, simu-
late the decision-making of SCCN Controller and
interactions between Switches. We evaluate the perfor-
mance of SCCN on users’ Time Utility and the Internet traf-
fic using real traffic traces. On the practical side, we conduct
extensive simulations on a hierarchical topology of a cam-
pus network and a backbone network topology as shown in
Fig. 4. Table 2 summarizes important metrics of these two
networks. Specifically, the node number and the edge num-
ber are the basic property of any topology. Besides, we also

focus on their radius and diameter, because they will affect
the complexity of the decision-making.

First, we analyze the behaviors of each algorithm at the
same system settings and network conditions. Second, we
show the impact of system settings on the performance of
SCCN, i.e., how the cache capacity of nodes and the traffic
constraints affect the network-wide Time Utility. Third, we
present how different network conditions affect the perfor-
mance of SCCN, such as the request pattern, the Internet
transmission delay and so on. In order to evaluate the aver-
age performance, we run 10 groups of tests under different
conditions. The mean and the standard deviations are used
in these error-bar figures, Figs. 6, 8, 10, and 11. Moreover, the
performance of HA is evaluatedwith large scale of problems.

6.1.1 Data Sets

Our evaluation is based on real traces collected at border
routers of a campus network. Note that the total amount of
traffic in each trace is approximately correlated to the num-
ber of host IP addresses in the sub-domain. Typical traffic
volume is about 6:9 GB� 178 GB/hour. The wide gap is
due to the traffic demand variance between the busy hour
and the idle hour. The total volume of traffic analyzed is
about 14TB, which was collected continuously in one week.

To find the solution of RA within a reasonable amount of
time, we filter the requests of the top 200 popular contents
from the collected traces of each hour, which are sufficient
to evaluate the performance of each algorithm. Based on the
traces, we set the transmission delays between neighbour-
ing nodes to be 1 and 2 ms in hierarchical topology and
backbone network topology, respectively. The size of con-
tents are mapped to four different lengths: 1, 5, 10 and 20 in
accordance with [22]. Moreover, the video streams from
Youku [26] are used to evaluate the performance of HA
with large problem sizes in real environment. They are
obtained by reconstruct TCP flows and filter out the video
streaming flows. The contents (i.e., video chunks) can be
distinguished by the VIDs which are contained in request
URLs. The number of contents is more than 11,000, and the
total number of requests is more than 100,000. We can
obtain the content size from the content length domain of
HTTP response header, and the transmission delay from
the time stamp. An example of request distributions and
content sizes is shown in Table 3. Note that the larger the
number of a content is requested, the smaller its size is. This
indicates that the Youku server has taken some

Fig. 4. The network topologies used for evaluation.

TABLE 2
The Metrics of the Two Network Topologies

Topology jV j jEj Radius Diameter

Hierarchy 16 18 2hops 3hops
Backbone 16 18 4hops 7hops

TABLE 3
Request Distributions of Video Contents

Content f1 f2 f3 f4 f5

Size 530 KB 2:9 MB 2:5 MB 7:8 MB 16:8
RequestCount 8,811 1,304 1,005 449 184

362 IEEE TRANSACTIONS ON BIG DATA, VOL. 4, NO. 3, JULY-SEPTEMBER 2018

Authorized licensed use limited to: Tsinghua University. Downloaded on June 15,2022 at 04:01:46 UTC from IEEE Xplore. Restrictions apply.

optimization strategies for video transmission. Because the
beginning part of videos is requested more times by users,
Youku server cuts the beginning part into smaller chunks.
This strategy can shorten the start time of videos.

6.1.2 Performance Metrics

We define Acceleration Ratio (Aratio) and Traffic Ratio
(Tratio) as the performance measures. Acceleration Ratio
denotes the ratio between the saved transmission delay and
the original Internet delay, and Traffic Ratio denotes the
ratio between the saved traffic and desired traffic without
SCCN. They are formulated as,

Aratio ¼
P

fk2F
P

i2V
Pnþ1

j¼1 UijðfkÞ � xijðfkÞP
fk2F

P
i2V riðfkÞ � IðfkÞ ; (9)

Tratio ¼
P

fk2F
P

i2V ½TiðfkÞ � TiðfkÞ � xiðnþ1ÞðfkÞ�P
fk2F

P
i2V TiðfkÞ : (10)

The fractional optimal solution is presented as a reference
bound (RB). Moreover, we compare RA and HA with two
distributed algorithms proposed in [4], i.e., Local-Greedy
Algorithm (LG) and Local-Greedy-Gen Algorithm (LGG).
LG adopts full replication strategy, where each node caches
theKmost popular contents for itself, and nodes do not share
contents with each other. On the contrary, LGG employs no
replication strategy, where only a single copy of each content
is cached and nodes share contents with each other.

6.1.3 Algorithm Behaviors

This part aims to distinguish the characteristic of RA, HA,
LG, LGG andMIP [22]. The Cumulative Acceleration Ratio of
the top 200 popular contents and their duplicates is shown in
Fig. 5. Due to the similar results in hierarchical topology, we
only present the results in backbone topology. X-coordinate
represents the number of contents and their duplicates
cached in the network, and Y-coordinate represents the sum
of Acceleration Ratio contributed by these contents. Note that
RA and HA achieve larger Time Utility by placing more con-
tents and duplicates. Because multiple duplicates reduce the
Time Utility of single duplicate, the Cumulative Acceleration

Ratio of LGG increases quickly when placing the most popu-
lar contents by employing no replication strategy. Although
LGG employs no replication strategy, it caches the most pop-
ular contents regardless their sizes, causing that it caches less
number of contents than RA andHA.Moreover, LGG cannot
exclude the client nodes with negative Time Utility, causing
the Cumulative Acceleration Ratio to decrease when placing
the less popular contents. The full replication strategy makes
the Cumulative Acceleration Ratio of LG always lower than
other algorithms described above.

To distinguish the computational complexities of our algo-
rithms, we run these algorithms on a regular desktop with
dual-core Intel i3-3220 3.3 GHz CPU and 8G DDR3 memory.
The running time of each algorithm at the same system set-
ting is shown in Table 4. Note that the high efficiency of HA
enables it to solve large scale problems and allow SCCNCon-
troller to update the placement decisions more frequently.
Moreover, to depict the overhead of SCCN Controller, we
count the total number of requests and the number of
requests which SCCNController handles under the solutions
of HA as shown in Table 5. Since the Controller only needs to
handle requests that failed to match in local HT, the number
is less than 3.5 percent of the total number of requests.

6.1.4 Impact of Cache Size

This simulation illustrates how the cache capacity impacts
the Time Utility and Traffic Cost. Since we have observed
similar results under circumstances where cache nodes
have equal capacity or heterogeneous capacities, we only
show results where cache nodes have equal capacity. The
cache size of each node is set to increase from 20 to 160 with
step length 20. We present the Acceleration Ratio and the
Traffic Ratio in Fig. 6.

Fig. 5. Cumulative acceleration ratio of contents in backbone network.

TABLE 4
Computing Time of Each Algorithm

Scheduler LRS RA HA LG LGG

Time 2 h 1:2 h 1:9 s 0:8 s 0:8 s

TABLE 5
Controller Overhead of HA

Time 17:00 18:00 19:00 20:00 21:00

Total 52,090 79,949 67,240 73,459 61,185
Controller 1,085 1,218 1,427 1,482 1,352

Fig. 6. Acceleration ratio and traffic ratio with different cache size.

CUI ETAL.: SDN-BASED BIG DATA CACHING IN ISP NETWORKS 363

Authorized licensed use limited to: Tsinghua University. Downloaded on June 15,2022 at 04:01:46 UTC from IEEE Xplore. Restrictions apply.

A notable phenomenon is that the Acceleration Ratio and
Traffic Ratio grow quickly when cache capacity is small
and then grow slowly with cache capacity increasing. The
reason is that the requests of most popular contents occupy
the majority of all requests, and nodes can obtain less Time
Utility by caching less popular contents with increased
capacity. Nodes do not share contents with each other
under LG, which reduces the least the inter-ISP traffic,
whereas it can save more in-network traffic. The total num-
ber of duplicates is shown in Fig. 8. The number of dupli-
cates of the top 5 popular contents in Backbone, and their
number of requests are shown in Fig. 7. RA can increase
the Acceleration Ratio further by placing more duplicates
with the cache capacity increasing, but this makes the Traf-
fic Ratio of RA lower than HA.

6.1.5 Impact of Internet Traffic Constraint

To show the effect of the traffic constraints as shown in (6),
we present the Acceleration Ratio with cache capacity 100 of
each node in Fig. 9.When coefficient r increases to 46 percent
at the current system setting, HA and RA can obtain the fea-
sible solutions. The Acceleration Ratios of HA and RA
increase with relaxation of the Internet Traffic Cost con-
straints. Note that the deviation of RA generated by round-
ing causes the fluctuation of results. However, HA can not
only achieve a tradeoff between the cache capacity and Inter-
net traffic, but also achieve a tradeoff between the transmis-
sion delay and Internet traffic by selecting contents with
different features to cache as shown in Figs. 6 and 9.

6.1.6 Impact of Request Pattern

The performance of SCCN under different request patterns
with cache capacity 120 of each cache node is shown in
Fig. 10. Larger Zipf Distribute Coefficient means more

requests of the most popular contents, i.e., the requests of
most popular contents occupy larger proportion of all
requests. We set the Zipf Distribute Coefficient a to increase
from 0.2 to 2 in step 0.2. The Acceleration Ratios of RA and
LG grow quickly with the Zipf Distribute Coefficient a

increasing. That is because RA and LG can place more
duplicates of the most popular contents, which can achieve
more Time Utility than placing less popular contents. The
Traffic Ratio of RA and LG is worse than HA and LGG,
because duplicates take up more cache space and users
must fetch contents with less popularity from the Internet.
However, when a ¼ 1, which has been observed in real web
access traces [21] and is consistent with our data trace, HA
and RA can achieve 64, 69 percent Acceleration Ratio
respectively, which are better than LG and LGG.

6.1.7 Impact of Average Internet Delay

We show how Acceleration Ratio and Traffic Ratio change
along with the different Internet transmission delays in
Fig. 11. We assume that the fetch delay distribution of 200
contents follows Gauss distribution with the average delay
varying from 5 to 30 ms in step 5 ms, keeping distribution
variance at 5 ms. All the cache nodes are configured with
120 cache capacity. Acceleration Ratio increases with Aver-
age Delay rising except LG, because nodes do not share con-
tents with each other in LG. Both HA and RA have a good
performance, which is reasonable according to formula (1).
When the Internet transmission delay is small, LGG cannot

Fig. 7. The number of duplicates of the top 5 popular contents in back-
bone network.

Fig. 8. The number of duplicates with different cache size.

Fig. 9. Acceleration ratio and traffic ratio with different internet traffic
constraints.

Fig. 10. Acceleration ratio and traffic ratio affected by request pattern.

364 IEEE TRANSACTIONS ON BIG DATA, VOL. 4, NO. 3, JULY-SEPTEMBER 2018

Authorized licensed use limited to: Tsinghua University. Downloaded on June 15,2022 at 04:01:46 UTC from IEEE Xplore. Restrictions apply.

accelerate the network any more. On the contrary, HA can
choose a suitable cover set and replace duplicates to avoid
getting negative utility gain.

6.1.8 The Performance of HA with Large Problem Sizes

To illustrate the effectiveness of HA, we evaluate HA with
large problem sizes in real network conditions. The cache
size of each node is set to increase from 300MB to 1 GB.
We present the Acceleration Ratio and the Traffic Ratio in
backbone network topology in Fig. 12. The Acceleration
Ratio in hierarchical topology is higher than that in back-
bone network topology. Due to space limitation, we do not
present the performance of HA in hierarchical topology.
Note that the Traffic Ratio of HA is better than LGG. The
volumes of contents with the larger requests number are
smaller than contents with less popularity, which reduces
the Traffic Ratio of LGG. However, HA can select cached
contents considering the cache capacity and Internet traffic
synthetically. Moreover, the performance of LG is better
than LGG, which is because that the Request Distribution
Coefficient a of video trace of one day is larger than one
hour. It is consistent with the conclusion drawn in Fig. 10.

6.2 Prototype Implementation

In this section, we implemented a prototype on top of Mini-
net [27] to validate the feasibility of SCCN. We emulate an
SDN network with Open vSwitch v2.3.0 [18] and Ryu

controller [19]. To handle users’ requests, we deploy a
proxy service and a cache management service at SCCN
Switch side. At the SCCN Controller side, we deploy a cen-
tral cache management service to manage global informa-
tion of caches.

Proxy and Cache Management Services. The proxy service is
implemented by adding components to mitmproxy v0.12

[28] to take over request sessions. Both cache management
and central cache management service are implemented by
adding components to Django v1.8 [29]. Cache manage-
ment service maintains HT and CS on the Switch to provide
query and content storage services. Users’ requests will be
sent to central cache management service when match
failed in local cache management service. Central cache
management service maintains SIT, CIT and ICIT on the
Controller, which has a global view of all the cache storage
and cache requests distribution.

Experiment Analysis. We conduct an evaluation based on
the prototype on a hierarchical topology of a campus net-
work. We recorded the average processing time for 100
requests under four cases in Fig. 13a, i.e., hitting a record
locally (Hit Local), hitting a record on remote Switch (Hit
Remote), not hitting in the network (Not Hit) and without
SCCN (No SCCN). Note that SCCN performs a little effi-
ciently compared with No SCCN when processing the
requests for small contents, due to the overhead of redirec-
tion and querying. However, SCCN is much more efficient
for large content requests, because the bandwidth and
transmission delay of intra-network is much better than
accessing Internet.

To understand the operating efficiency of SCCN, we
show the processing time of proxy, query locally (Query I),
query on remote Switch (Query II), and the download time
for 100 KB, 1 MB, 10 MB and 100 MB in Fig. 13b. Note that
SCCN introduces about 30 ms additional delay due to the
proxy, which is responsible for the request forward and the
proxy query. However it is efficient enough for all contents,
especially when the contents are larger than 10 MB. More-
over, the number of requests that the Controller needs to
handle is less than 3.5 percent of the total number of
requests as shown in Table 5. It can improves the efficiency
of SCCN furtherly.

7 RELATED WORK

The existing research efforts of network caching technology
can be divided into two categories: isolated cache replace-
ment and multi-cache placement.

Isolated Cache Replacement. The three most common types
of isolated cache are proxy server, standalone cache and

Fig. 11. Acceleration ratio and traffic ratio affected by average internet
delay.

Fig. 12. The performance of HA.

Fig. 13. Operating efficiency of SCCN.

CUI ETAL.: SDN-BASED BIG DATA CACHING IN ISP NETWORKS 365

Authorized licensed use limited to: Tsinghua University. Downloaded on June 15,2022 at 04:01:46 UTC from IEEE Xplore. Restrictions apply.

browser-based cache. Studies about isolated cache mostly
focus on the replacement strategy, which refers to the process
that takes placewhen the cache becomes full and old contents
must be removed to make space for new ones [15]. Replace-
ment strategies can be classified into recency-based strategies
and frequency-based strategies[15]. Recency-based strategies
evict the object which was requested the least recently (e.g.,
LRU, LRU-Min). Frequency-based strategies evict the object
which was accessed least frequently (e.g., LFU, LFU-DA).
Some strategies mix recency and frequency and should be
treated as recency/frequency-based strategies.

Multi-Cache Placement. Multi-cache paradigms mainly
include hierarchical cache, distributed cache and hybrid
cache. Hierarchical Web cache was first proposed in the
Harvest project [25]. Similar content placement strategies
are proposed in [30], [31], [32], which aim to minimize aver-
age access costs. However, in hierarchical architecture, high
level caches may become bottlenecks. Distributed cache
schemes only deploy caches at the bottom level. Several dis-
tributed cache systems were proposed in [33], [34], focusing
on optimizing the transmission delay and eliminating trans-
mission redundancy in mobile environments. Nevertheless,
a large-scale deployment of distributed cache may encoun-
ter several problems such as higher connection time, higher
bandwidth usage, etc. In a hybrid scheme, caches may coop-
erate with other caches at the same level or at a higher level.
Applegate et al. [22] consider arbitrary networks with
diverse disk and link bandwidth constraints. They employ
a Lagrangian relaxation-based decomposition technique to
find a near-optimal solution.

Contrary to existing solutions, our schemes employ cen-
tralized control plane to coordinate distributed cache nodes
in networks. To alleviate the performance bottleneck of ISP
networks, the placement decision aims to minimize the
users’ transmission delay while satisfying the disk space
and access links’ capacity constraints. SCCN Controller
makes content placement decisions based on request history
(frequency-based) and increment recording (recency-
based), which can adapt easily to time varying changes in
the access probabilities.

8 CONCLUSION

In this paper, we propose an SDN-based Cooperative Cache
Network, which can reduce the users’ transmission delay
and limit the inter-ISP traffic. An increment recording
mechanism is designed, which can adapt to popularity
change of contents. An approximation algorithm is pro-
posed to solve the content placement problem with an
approximation ratio of 1=2 in the worst case. Furthermore,
we design an efficient heuristic algorithm, which can not
only allow the Controller to update the placement more fre-
quently, but also achieve a tradeoff between the transmis-
sion delay and Internet traffic. Extensive trace-based
simulation and experimental results demonstrate the effec-
tiveness of SCCN under various network conditions.

ACKNOWLEDGMENTS

This work is supported by the National High Technology
Research and Development Program (”863” Program) of
China (no. 2015AA016101), Tsinghua National Laboratory

for Information Science and Technology (TNList), Tsinghua
University Initiative Scientific Research Program and the
Research Grants Council of the Hong Kong Special Admin-
istrative Region, China (No. CityU 117913) and the Science
and Technology Project of State Grid Corporation of China
(No. SGRIXTJSFW[2016]377).

REFERENCES

[1] Index, Cisco Visual Networking. “Forecast and methodology,
2014–2019 white paper,” Cisco, Tech. Rep., 2015.

[2] V. Pacifici, F. Lehrieder, and G. D�an, “Cache capacity allocation
for BitTorrent-like systems to minimize inter-ISP traffic,” in Proc.
IEEE INFOCOM, 2012, pp. 1512–1520.

[3] Y. Huang, T. Z. Fu, D.-M. Chiu, J. Lui, and C. Huang, “Challenges,
design and analysis of a large-scale P2P-VoD system,” in Proc.
ACM SIGCOMM Conf. Data Commun., 2008, pp. 375–388.

[4] S. Borst, V. Gupta, and A. Walid, “Distributed caching algorithms
for content distribution networks,” in Proc. IEEE INFOCOM, 2010,
pp. 1–9.

[5] M. Qian, Y. Wang, Y. Zhou, L. Tian, and J. Shi, “A super base sta-
tion based centralized network architecture for 5G mobile com-
munication systems,” Digit. Commun. Netw., vol. 1, no. 2, pp. 152–
159, 2015.

[6] F. Chen, K. Guo, J. Lin, and T. La Porta, “Intra-cloud lightning:
Building CDNs in the cloud,” in Proc. IEEE INFOCOM, 2012,
pp. 433–441.

[7] D. Ciullo, V. Martina, M. Garetto, and E. Leonardi, “How much
can large-scale video-on-demand benefit from users’ coopera-
tion?” in Proc. IEEE INFOCOM, 2013, pp. 2724–2732.

[8] B. Frank, et al., “Pushing CDN-ISP collaboration to the limit,”
ACM SIGCOMM Comput. Commun. Rev., vol. 43, no. 3, pp. 34–44,
2013.

[9] D. J. McLaggan, “Web cache communication protocol (WCCP)
(version 2),” IETF Draft, 2012.

[10] X. Liu, et al., “A case for a coordinated internet video control
plane,” in Proc. ACM SIGCOMM Conf. Appl. Technol. Archit. Proto-
cols Comput. Commun., 2012, pp. 359–370.

[11] M. K. Mukerjee, D. Naylor, J. Jiang, D. Han, S. Seshan, and
H. Zhang, “Practical, real-time centralized control for CDN-based
live video delivery,” in Proc. ACM Conf. Special Interest Group Data
Commun., 2015, pp. 311–324.

[12] N. McKeown, et al., “OpenFlow: Enabling innovation in campus
networks,” ACM SIGCOMM Comput. Commun. Rev., vol. 38,
pp. 69–74, 2008.

[13] D. Levin, A. Wundsam, B. Heller, N. Handigol, and A. Feldmann,
“Logically centralized?: State distribution trade-offs in software
defined networks,” in Proc. 1st Workshop Hot Topics Softw. Defined
Netw., 2012, pp. 1–6.

[14] Q. Duan, “Modeling and performance analysis for composite
network–compute service provisioning in software-defined cloud
environments,” Digit. Commun. Netw., vol. 1, no. 3, pp. 181–190,
2015.

[15] S. Podlipnig and L. B€osz€ormenyi, “A survey of Web cache
replacement strategies,” Comput. Surveys, vol. 35, no. 4, pp. 374–
398, 2003.

[16] D. B. Shmoys and �E. Tardos, “An approximation algorithm for the
generalized assignment problem,” Math. Program., vol. 62, no. 1–
3, pp. 461–474, 1993.

[17] D. S. Hochbaum, “Heuristics for the fixed cost median problem,”
Math. Program., vol. 22, no. 1, pp. 148–162, 1982.

[18] Open vswitch. (2009). [Online]. Available: http://openvswitch.org/
[19] Ryu. (2007). [Online]. Available: http://osrg.github.com/ryu/
[20] F. Qian, et al., “Web caching on smartphones: Ideal versus real-

ity,” in Proc. 10th Int. Conf. Mobile Syst. Appl. Services, 2012, pp.
127–140.

[21] L. Breslau, P. Cao, L. Fan, G. Phillips, and S. Shenker, “Web cach-
ing and Zipf-like distributions: Evidence and implications,” in
Proc. IEEE 18th Annu. Joint Conf. IEEE Comput. Commun. Soc., 1999,
pp. 126–134.

[22] D. Applegate, et al., “Optimal content placement for a large-scale
VoD system,” in Proc. 6th Int. Conf. ACM, 2010.

[23] B. Ager, F. Schneider, J. Kim, and A. Feldmann, “Revisiting cache-
ability in times of user generated content,” in Proc. IEEE Conf.
Comput. Commun. Workshops, 2010, pp. 1–6.

366 IEEE TRANSACTIONS ON BIG DATA, VOL. 4, NO. 3, JULY-SEPTEMBER 2018

Authorized licensed use limited to: Tsinghua University. Downloaded on June 15,2022 at 04:01:46 UTC from IEEE Xplore. Restrictions apply.

[24] A. Anand, C. Muthukrishnan, A. Akella, and R. Ramjee,
“Redundancy in network traffic: Findings and implications,” in
Proc. 11th Int. Joint Conf.Meas.Model. Comput. Syst., 2009, pp. 37–48.

[25] A. Chankhunthod, P. B. Danzig, C. Neerdaels, M. F. Schwartz,
and K. J. Worrell, “A hierarchical internet object cache,” Proc.
Annu. Conf. USENIX Annu. Tech. Conf., 1996, pp. 13–13.

[26] youku. (2003). [Online]. Available: http://www.youku.com/
[27] B. Lantz, B. Heller, and N. McKeown, “A network in a laptop:

Rapid prototyping for software-defined networks,” in Proc. 9th
ACM SIGCOMMWorkshop Hot Topics Netw., 2010, Art. no. 19.

[28] mitmproxy. (2010). [Online]. Available: https://mitmproxy.org/
[29] Django. (2010). [Online]. Available: https://docs.djangoproject.

com/en/1.8/
[30] W. Li, E. Chan, G. Feng, D. Chen, and S. Lu, “Analysis and perfor-

mance study for coordinated hierarchical cache placement strat-
egies,” Comput. Commun., vol. 33, no. 15, pp. 1834–1842, 2010.

[31] Y. Kim and I. Yeom, “Performance analysis of in-network caching
for content-centric networking,” Comput. Netw., vol. 57, no. 13,
pp. 2465–2482, 2013.

[32] M. Mangili, F. Martignon, and A. Capone, “A comparative study
of content-centric and content-distribution networks: Performance
and bounds,” in Proc. IEEE Global Commun. Conf., 2013, pp. 1403–
1409.

[33] S. Sanadhya, R. Sivakumar, K.-H. Kim, P. Congdon,
S. Lakshmanan, and J. P. Singh, “Asymmetric caching: Improved
network deduplication for mobile devices,” in Proc. 18th Annu.
Int. Conf. Mobile Comput. Netw., 2012, pp. 161–172.

[34] S.-H. Shen and A. Akella, “An information-aware QoE-centric
mobile video cache,” in Proc. 19th Annu. Int. Conf. Mobile Comput.
Netw., 2013, pp. 401–412.

Yong Cui received the BE and PhD degrees in
computer science and engineering from Tsinghua
University, China, in 1999 and 2004, respectively.
He is currently a full professor with Tsinghua Uni-
versity, co-chair of IETF IPv6 Transition WG Soft-
wire. Having published more than 100 papers in
refereed journals and conferences, he received
the National Award for Technological Invention in
2013, the Influential Invention Award of China
Information Industry in both 2012 and 2004. He
authored three Internet standard documents,

including RFC 7040 and RFC 5565, for his proposal on IPv6 transition
technologies. He serves at the editorial board on both the IEEE Transac-
tions on Parallel and Distributed Systems and the IEEE Transactions on
Cloud Computing. His major research interests include mobile wireless
Internet and computer network architecture.

Jian Song received the BE and ME degrees
from the Department of Computer Science and
Technology, Information Engineering University,
Zhengzhou, China, in 2003 and 2006, respec-
tively. He is currently working toward the PhD
degree in the Department of Computer Science
and Technology, Tsinghua University, Beijing,
China. His research interests include the areas of
wireless networking and mobile cloud computing.

Minming Li received the BE and PhD degrees
from the Department of Computer Science and
Technology, Tsinghua University, Beijing, China,
in 2002 and 2006, respectively. He is currently an
associate professor in the Department of Com-
puter Science, City University of Hong Kong. His
research interests include wireless ad hoc net-
works, algorithm design and analysis, and combi-
natorial optimization.

Qingmei Ren received the BE degree from
the Department of Computer Science and Tech-
nology, Beijing University of Posts and Telecom-
munications, Beijing, China, in 2015. She is
currently working toward the master’s degree in
the Department of Computer Science and Tech-
nology, Tsinghua University, Beijing, China. Her
research interests include the areas of wireless
networking and mobile cloud computing.

Yangjun Zhang received the BE degree from the
Department of Computer Science and Technol-
ogy, Beijing University of Posts and Telecommuni-
cations, Beijing, China, in 2013. He is currently
working toward the master’s degree in the
Department of Computer Science and Technol-
ogy, Tsinghua University, Beijing, China. His
research interests include the areas of wireless
networking and mobile cloud computing.

Xuejun Cai received the PhD degree from the
Chinese Academy of Sciences, Beijing, China, in
2000. Since 2009, he has been with Ericsson
Research, and his research interests include con-
tent delivery, wireless network, Internet of things,
and cloud management. He has authored multi-
ple journal articles, conference papers, patent
applications and has been involved in 3GPP and
IETF standardization.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

CUI ETAL.: SDN-BASED BIG DATA CACHING IN ISP NETWORKS 367

Authorized licensed use limited to: Tsinghua University. Downloaded on June 15,2022 at 04:01:46 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

